第1章 ミクロな世界
1.1 古典論とその限界
1.2 光の二重性
1.3 電子の二重性
1.4 原子スペクトル
演習問題
第2章 シュレーディンガー方程式
2.1 シュレーディンガー方程式
2.2 波動関数と確率解釈
2.3 不確定性関係
演習問題
第3章 1次元の問題―束縛状態
3.1 時間に依存しないシュレーディンガー方程式
3.2 無限の深さの井戸型ポテンシャル
3.3 有限の深さの井戸型ポテンシャル
3.4 調和振動子
演習問題
第4章 1次元の問題―反射と透過
4.1 自由粒子
4.2 階段型ポテンシャル
4.3 土手型ポテンシャル―トンネル効果
4.4 連続固有値の固有関数の規格化
演習問題
第5章 3次元での中心力ポテンシャルの問題
5.1 3次元のシュレーディンガー方程式
5.2 極座標でのシュレーディンガー方程式
5.3 球面調和関数
5.4 軌道角運動量演算子
5.5 動径方向の波動方程式
5.6 水素原子
演習問題
第6章 量子力学の体系
6.1 古典論の体系
6.2 線形代数の復習
6.3 量子論の枠組み
演習問題
第7章 演算子の諸性質
7.1 エルミート演算子
7.2 演算子の行列表現
7.3 交換関係
7.4 調和振動子の生成消滅演算子
7.5 ブラとケット
演習問題
第8章 角運動量
8.1 軌道角運動量
8.2 スピン角運動量
8.3 スピン角運動量演算子とその表現
8.4 回転の変換
8.5 角運動量演算子の固有状態
8.6 角運動量の合成
演習問題
第9章 外場中の電子
9.1 電磁場中の荷電粒子(古典論)
9.2 電磁場中の荷電粒子(量子論)
9.3 一様磁場中の荷電粒子
9.4 固有磁気モーメント
9.5 スピン軌道相互作用
演習問題
第10章 多粒子系
10.1 多粒子系の波動関数
10.2 ボース粒子とフェルミ粒子
10.3 独立粒子近似
演習問題
付録 特殊関数
A.1 エルミートの多項式
A.2 ルジャンドルの多項式
A.3 ラゲールの多項式
付表 基礎的な物理定数
演習問題解答
さらに勉強するために
索引
1.1 古典論とその限界
1.2 光の二重性
1.3 電子の二重性
1.4 原子スペクトル
演習問題
第2章 シュレーディンガー方程式
2.1 シュレーディンガー方程式
2.2 波動関数と確率解釈
2.3 不確定性関係
演習問題
第3章 1次元の問題―束縛状態
3.1 時間に依存しないシュレーディンガー方程式
3.2 無限の深さの井戸型ポテンシャル
3.3 有限の深さの井戸型ポテンシャル
3.4 調和振動子
演習問題
第4章 1次元の問題―反射と透過
4.1 自由粒子
4.2 階段型ポテンシャル
4.3 土手型ポテンシャル―トンネル効果
4.4 連続固有値の固有関数の規格化
演習問題
第5章 3次元での中心力ポテンシャルの問題
5.1 3次元のシュレーディンガー方程式
5.2 極座標でのシュレーディンガー方程式
5.3 球面調和関数
5.4 軌道角運動量演算子
5.5 動径方向の波動方程式
5.6 水素原子
演習問題
第6章 量子力学の体系
6.1 古典論の体系
6.2 線形代数の復習
6.3 量子論の枠組み
演習問題
第7章 演算子の諸性質
7.1 エルミート演算子
7.2 演算子の行列表現
7.3 交換関係
7.4 調和振動子の生成消滅演算子
7.5 ブラとケット
演習問題
第8章 角運動量
8.1 軌道角運動量
8.2 スピン角運動量
8.3 スピン角運動量演算子とその表現
8.4 回転の変換
8.5 角運動量演算子の固有状態
8.6 角運動量の合成
演習問題
第9章 外場中の電子
9.1 電磁場中の荷電粒子(古典論)
9.2 電磁場中の荷電粒子(量子論)
9.3 一様磁場中の荷電粒子
9.4 固有磁気モーメント
9.5 スピン軌道相互作用
演習問題
第10章 多粒子系
10.1 多粒子系の波動関数
10.2 ボース粒子とフェルミ粒子
10.3 独立粒子近似
演習問題
付録 特殊関数
A.1 エルミートの多項式
A.2 ルジャンドルの多項式
A.3 ラゲールの多項式
付表 基礎的な物理定数
演習問題解答
さらに勉強するために
索引